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Abstract

A new approach, based on H2 optimal control theory, is presented for the design of feedback controllers for energy

harvesting systems for maximal power generation. The theory applies to stochastically excited vibratory systems in

broadband stationary response, and allows for harvested power to be explicitly optimized. It is applicable to both single-

transducer systems as well as coupled networks of many transducers. The theory accounts for the influence of energy

harvesting on the dynamics of the structure to which the transducers are attached. It also accounts for resistive and

semiconductor dissipation in the power-electronic network interfacing the transducers with energy storage. Due to its

predominance in the literature, a piezoelectric bimorph cantilever beam is used as the context for the theory, and

simulation examples are used to illustrate various aspects of the optimal controllers.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is a growing demand for engineering systems that are capable of operating in complete energy-
autonomy for the duration of a decades-long service life. Examples include intelligent systems for biological
implants, and wireless sensors for in situ structural health monitoring. This has given rise to significant activity
over the last decade in energy scavenging technology to harvest power from ambient vibration. While many
modes of transduction could be used for energy-scavenging, there is a growing consensus that piezoelectric
approaches are often the most appropriate at the mW–mW scale, which is typical of these applications. There
have been hundreds of studies on the transduction of electrical energy from a single piezoelectric transducer,
bonded to a vibrating beam, in which its voltage is rectified through a full bridge rectifier, to which is
connected a capacitor and rechargeable battery, or a resistive load. Sensitivity of the harvested power, due to
changes in the transducer configuration, polarization, geometry, coupling coefficient, and dielectric constant
as well as characteristics of the structure and external forcing have been investigated (see [1] and the many
references therein).

Fig. 1 shows an example of the type of energy harvesting system to be considered here, in which a number of
piezoelectric bimorph patches are bonded to a resonant flexible beam, and interfaced through an electronic
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Energy harvesting bimorph cantilever with distributed piezoelectric transducers (gray) bonded to a substrate (white).
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network. Random vibration of the base mount causes the beam system to resonate in several of its flexible
modes, and the resultant bending motion generates charge in the piezoelectric patches. Through proper
power-electronic control, energy can be drawn from these patches and interfaced with energy storage, or
recirculated back into the beam through another patch. The power electronics are controlled so as to impose a
multi-input, multi-output control law on the structure, in which the goal is to maximize the harvested energy
sent to storage.

Thus far, most studies regarding these types of energy harvesting systems have focused on single-transducer
systems. Some of the first investigations into the design of power-electronic control systems for small-scale
vibratory energy harvesting systems were reported in Refs. [2–4] as well as [5]. These studies examined the use
of power-electronic control to achieve favorable supply recharge characteristics, by connection of a
controllable DC–DC converter to the bridge rectifier. The external forcing was assumed to be harmonic, at the
resonant frequency of the beam system, and the control design was based on the concept of impedance
matching. More recently, systematic studies were conducted on the optimal matched impedance for harmonic
excitation, and its sensitivity to other aspects of the system [6,7].

In 2003, it was suggested [8] that power transduction from piezoelectric devices might be improved
through the use of a switchmode ‘‘H-bridge’’ drive, in exchange for the bridge rectifier used in previous
designs. Recent years have seen a number of investigations [9–12] on the incorporation of power-electronic
switches into the rectifier circuitry, resulting in several ad hoc active drive technologies. These studies
proposed a number of heuristic switching rules and circuit topologies which allow much greater control of
transduced energy, increasing power flow from the transducer significantly beyond that for simpler electronic
systems.

Against this backdrop, the contributions of this paper are threefold. First, it is an investigation of the
optimal way to control the currents in the power-electronic drive system to maximize the power delivered to
storage, and illustrates that this problem may be framed in the context of H2 optimal control theory. This
approach allows for dissipation in the electronics to be taken into account in the optimization.

The second contribution is that these concepts are framed in the context of broadband stochastic vibratory
response. Most energy harvesting strategies proposed thus far have presumed harmonic excitation, or at least
that the vibratory system has a high enough quality factor that this approximation is justifiable. The present
analysis makes the opposite assumption, i.e., that the external disturbance is a white noise process. Thus, it
provides an alternative approach which may be more appropriate for systems with multiple significant modes
and wide excitation frequency band.

The third contribution is that the theory is applicable to networks of many transducers, as illustrated in
Fig. 1. Methods for harvesting energy from arrays of dynamically coupled transducers in spatially distributed
arrays has received recent attention [13,14], and the present analysis frames the management of power for
these systems in a systematic control-theoretic context.
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The notation is mostly standard. Bold lower-case notation will be used to refer to vectors, and bold upper-
case for matrices. Expressions kqk1 and kqk2 refer to the ‘‘1-norm’’ and Euclidean norm of q 2 Rn.
Additionally, kqkQ ¼ ðq

TQqÞ1=2. Notation tr½Q� refers to the trace of matrix Q, and Q40 implies that Q is
positive-definite. Expression E½q� refers to the expectation of stationary stochastic time-valued vector qðtÞ,
argmin½�� refers to the minimizing argument, and diagða; b; cÞ refers to the diagonal matrix with the ordered
scalar arguments along its diagonal. The notation êp refers to the unit vector in direction p. Notation
g�Nðm;sÞ implies that g is a Gaussian random variable with mean m and standard deviation s.

2. System model

2.1. Beam model

In Ref. [15], the electromechanical dynamics of a beam with multiple bimorph piezoelectric transducers
were derived. Here, we present an overview of this model, while adopting many of simplifying assumptions
made in Ref. [16].

Let rðx; y; z; tÞ denote the density at location fx; y; zg in the substrate–piezo composite. Let Sðx; y; z; tÞ 2 R6

and Tðx; y; z; tÞ 2 R6 denote the Voigt (i.e., vector) form of the strain and stress tensors, and let Eðx; y; z; tÞ 2
R3 and Dðx; y; z; tÞ 2 R3 denote the electric field and displacement vectors. We assume the linear constitutive
relationship

Tðx; y; z; tÞ

Dðx; y; z; tÞ

" #
¼

cðx; y; z; tÞ �eTðx; y; z; tÞ

eðx; y; z; tÞ eðx; y; z; tÞ

" #
Sðx; y; z; tÞ

Eðx; y; z; tÞ

" #
, (1)

where c is the modulus of elasticity at zero field, e is the dielectric constant matrix at zero strain, and e is the
coupling coefficient matrix. (Note that in the substrate material, e and e are zero.)

To study the electromechanical dynamics in the context of the cantilever beam in Fig. 1, define dðx; tÞ as the
transverse deflection of the beam centroid, relative to the neutral axis. Then, the Bernoulli–Euler beam
deformation assumption is made, i.e.,

Sðx; y; z; tÞ ¼ yd 00ðx; tÞ
êx

0

� �
. (2)

Deflection dðx; tÞ is approximated in the usual way, by a finite summation of Galerkin functions, as

dðx; tÞ ¼ /T
ðxÞrðtÞ, (3)

where /ðxÞ 2 RN is a vector of x-valued Galerkin functions which satisfy boundary conditions and rðtÞ 2 RN is
the coordinate vector for the reduced system. We will use the convention of assigning these Galerkin functions
to be mass-orthonormal, i.e., Z

V

/ðxÞ/T
ðxÞrðx; yÞdV ¼ I. (4)

This convention is not necessary for the ensuing analysis to work, but it does simplify the notation
considerably.

To characterize the external mechanical loading, we assume the only excitation to be the base acceleration
aðtÞ, which is assumed to be in the êy direction. In the coordinate system fixed at the base mount, this is
equivalent to an external force

f ðx; y; tÞ ¼ rðx; yÞaðtÞ (5)

applied in the y direction.
Let the components of vectors vðtÞ and iðtÞ denote the voltages and currents for transducer patches 1; . . . ; np.

As shown in Fig. 1, the patches are assumed to be prismatic, with rectangular cross section, a common
thickness tp, and lengths f‘1; . . . ; ‘np

g. They are assumed to span the width w of the beam. The gaps between
patches are assumed to be of negligible length, and are assumed to have no effect on beam stiffness.
E is assumed to be constant inside each patch, zero in the substrate, and oriented in the êy direction
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everywhere, i.e.,

Eðx; y; z; tÞ ¼ êycðyÞfTðxÞvðtÞ, (6)

where êy is the unit vector on the y direction, cðyÞ is defined as

cðyÞ ¼

�1=tp; tb=2oyotb=2þ tp;

0; �tb=2oyotb=2;

1=tp; �tb=2� tpoyo� tb=2

8><
>: (7)

and fðxÞ is a vector in which zjðxÞ is the logical indicator function for patch j situated at location x along
the beam.

With these assumptions, the differential equations for the reduced-order system are found through a
standard Rayleigh–Ritz projection, giving differential equations for r and v as

€rðtÞ þ KrðtÞ þHvðtÞ ¼ CaðtÞ, (8)

Cp _vðtÞ �HT_rðtÞ ¼ iðtÞ, (9)

where

K ¼

Z
V

cxxðx; yÞy
2/00ðxÞ/00T ðxÞdV , (10)

H ¼
Z

V

eyxðx; yÞycðyÞ/00ðxÞfTðxÞdV , (11)

Cp ¼

Z
V

�yyðx; yÞc
2
ðyÞfðxÞfTðxÞdV , (12)

C ¼
Z

V

/ðxÞrðx; yÞdV (13)

and where cxx is the fx;xg component of c, eyx is the fy;xg component of e, and �yy is the fy; yg component of e.
Note that it has been assumed that these parameters, as well as the density r, are uniform in the z direction.

As pointed out in Ref. [16], it is crucial to include material damping in the beam model, in order for its
predictions of transductive behavior to be reasonable. To reflect dissipation in the beam, Rayleigh damping
will be added to differential equation (8) for rðtÞ, i.e.,

€rðtÞ þ C_rðtÞ þ KrðtÞ þHvðtÞ ¼ CaðtÞ, (14)

where C is assumed to have the form C ¼ aMIþ aKK. Similarly, dielectric loss in the piezoelectric capacitances
is introduced through a parallel resistance matrix Rp ¼ diagðRp1; . . . ;Rpnp

Þ, modifying Eq. (9) to

Cp _vðtÞ þ R�1p vðtÞ �HT_rðtÞ ¼ iðtÞ. (15)

2.2. Power-electronic model

Because no two patches can occupy the same x coordinate, capacitance matrix Cp will in general be
diagonal, with component fj; jg equal to the capacitance of patch j. Consequently, we may represent the
transducer network as in Fig. 2.

The drive current vector iðtÞ is controlled by operating the four switches, arranged in ‘‘H-bridge’’
configuration, which interface each transducer with the storage system voltage V S. It will be assumed that VS

is large in comparison to vðtÞ, which is true for sufficiently low excitation levels, and can always be ensured
through proper design and power management of the energy storage subsystem. (Removal of this assumption,
which results in a somewhat more complicated analysis, was recently considered in Ref. [17].) It will also be
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Fig. 2. Drive circuitry for distributed energy harvesting system.

J.T. Scruggs / Journal of Sound and Vibration 320 (2009) 707–725 711
assumed that the input impedance of the storage subsystem may be neglected, and that voltage V S remains
constant, independently of the current iS. This assumption is justified for sufficiently low power levels.
A relaxation of these assumptions, which greatly complicates the analysis, remains an item for future work.

Through appropriate operation of the switches in the H-bridge for each transducer, the voltage across each
inductor can be made positive or negative (this comes from the assumption that VS is large). As such, these
switches can be used to raise and lower the currents i. High-bandwidth current tracking for power-electronic
drives, using either pulse width modulation or hysteretic switching paradigms, is a well-understood technology
(see, for example, Ref. [18]). To simplify the analysis here, it will here be assumed that such a tracking control
system can be used to instantaneously produce a desired current vector for iðtÞ. There are many theoretical and
practical considerations which must be taken into account in the design of the power-electronic hardware and
current tracking controller, such that this approximation is justified [19,20]. However, it is beyond the scope of
the present study to delve into these details.

Under these assumptions, the net power flow into the piezoelectric patches is

PpðtÞ ¼ iTðtÞvðtÞ. (16)

The power flow to storage from the network is

PSðtÞ ¼ iSðtÞV SðtÞ. (17)

If the drive system were 100% efficient, then PSðtÞ ¼ �PpðtÞ. However, in general there are resistive and
semiconductor losses in the drive, which will be denoted as PdðtÞ. We will assume that this power flow may be
approximated as

PdðtÞ ¼ iTðtÞRiðtÞ þ
Xnp

j¼1

jijðtÞjVsw. (18)

The first term above reflects resistive (i.e., ‘‘i2R’’) losses in the drive. The terms in the summation reflect
semiconductor dissipation in the drive switches, which are approximately the product of the activation voltage
of the switch (V sw) and the current magnitude.

Although the above approximation can be used to capture some of the primary sources of dissipation in the
drive system, it is acknowledged that it is an approximation and does not account for all losses. For example, it
does not reflect switch transition losses, core losses in the inductor, or the power required for the gate drives.
For an application where these losses dominate, the theory proposed here will require extension.
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2.3. Example parameters

In this paper we will routinely resort to examples to illustrate the analytical concepts. Table 1 shows the
physical constants used in all these examples, which were adapted from the example in Ref. [16], in which the
piezoelectric material was lead zirconium titanate (PZT). The remaining unspecified parameters (such as np,
f‘1; . . . ; ‘np

g, Rj, etc.) will vary from one specific example to the next.
The Galerkin functions to be used in the approximate analysis will be the first seven mode shapes of a

uniform cantilever Euler–Bernoulli beam, i.e.,

fjðxÞ / ½sinðbj‘Þ � sinhðbj‘Þ�½sinhðbjxÞ � sinðbjxÞ� þ ½cosðbj‘Þ þ coshðbj‘Þ�½coshðbjxÞ � cosðbjxÞ�, (19)

where the bj values satisfy

cosðbj‘Þ coshðbj‘Þ ¼ �1. (20)

With the piezoelectrics short-circuited (i.e., with v ¼ 0), the beam model reduces to the standard
Bernoulli–Euler beam, and the above mode shapes become exact. Rayleigh damping parameters were
assigned such that for this scenario the first seven modes have natural frequencies and damping ratios given by
Table 2. For modeling purposes, zj ¼ 1 was effectively assumed for j47.

2.4. Linear state-space representation

With the above modeling assumptions for the electromechanical system, we may consider the dynamic
system at hand to be characterized by the augmented state vector

x ¼

K1=2 0 0

0 I 0

0 0 C1=2
p

2
664

3
775

r

_r

v

2
64
3
75. (21)
Table 1

Example parameters for beam with three bimorph transducers

�yy 1800�0
eyx �11:3Pa=V

cxx (piezo) 63GPa

(substrate) 2.5GPa

r (piezo) 7700kg=m3

(substrate) 2150kg=m3

‘ 100mm

tb 0.25mm

tp 0.25mm

w 25mm

CpjRpj 2 s

Table 2

Natural frequencies and damping ratios for example beam

Mode oi (rad/s) zi � 100

1 241 1.0

2 1510 4.4

3 4220 12

4 8270 24

5 13,700 39

6 20,400 58

7 28,500 82
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In this notation, the total electromechanical energy in the beam is EðtÞ ¼ 1
2
xTðtÞxðtÞ, and the linear state-space

system dynamics are described by

_xðtÞ ¼ AxðtÞ þ BiiðtÞ þ BaaðtÞ, (22)

vðtÞ ¼ BT
i xðtÞ, (23)

where

A ¼

0 K1=2 0

�K1=2 �C �HC�1=2p

0 C�1=2p HT
�C�1=2p R�1p C�1=2p

2
664

3
775, (24)

Ba ¼

0

C

0

2
64

3
75; Bi ¼

0

0

C�1=2p

2
64

3
75. (25)

Note that in the system realization above, matrix Bi exhibits reciprocity as both an input matrix in Eq. (22)
and a collocated output matrix in Eq. (23).

In this analysis aðtÞ is modeled as a Gaussian white noise process, with spectral intensity of Fa. However, it
is straightforward to extend the ideas presented here to the case in which aðtÞ is assumed to have nontrivial
spectral characteristics, by modeling aðtÞ as a linear stochastic dynamic process, and augmenting the states of
this process to the state vector x.

2.5. Preliminary observations regarding power flow

Let PAðtÞ be the mechanical power flow from disturbance aðtÞ, to the system. Then for aðtÞ modeled as white
noise, we summarize some useful observations from general stochastic vibration theory.

Lemma 1. Let i be related to the system response by any stabilizing, causal feedback function, and assume that all

modes above the first N have infinite damping. Then in stationary response, the average power absorbed by the

first N modes is equal to

P̄N
A ¼

1
2
FaB

T
aBa. (26)

Proof. From Eqs. (22) and (23), we have that

_EðtÞ ¼ 1
2
½xTðtÞ _xðtÞ þ _xTðtÞxðtÞ�. (27)

But inspection of Eq. (24) implies that the dissipation associated with state x is

PxðtÞ ¼ �xðtÞ
TAxðtÞ (28)

and the power injected into the state-space model by the drive is

PpðtÞ ¼ xTðtÞBiiðtÞ. (29)

Thus, from energy conservation, we have that the power driven into the state-space by acceleration aðtÞ is
_E � Pp þ Px, i.e.,

PN
A ðtÞ ¼ xTðtÞBaaðtÞ. (30)

It is a standard result of stochastic system theory [21] that if x! i is a causal mapping, the expectation of the
above is Eq. (26). &

One may ask why it is that we should distinguish P̄N
A from P̄A, i.e., if the only modes excluded from the

computation of P̄N
A have infinite damping, then their response amplitudes are infinitesimal, suggesting that
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P̄N
A ¼ P̄A. However, this is not true. Consider, for example, the classical result that a single dof oscillator,

subjected to a white noise base acceleration, dissipates the same amount of average power irrespective of its
damping [22]. This is evident in the fact that the system damping does not figure into the computation of P̄N

A .
Even though the higher modes are infinitely damped and have negligible dynamics, they do still dissipate a
finite amount of energy for the modeling assumptions made here.

Lemma 2. Let m be the total mass of the beam. Then

P̄A ¼ lim
N!1

P̄N
A (31)

¼
1

2
mFa. (32)

Proof. Let uðxÞ be the Heaviside step function, and let m be its components in the L2 Hilbert space spanned
by / for N !1, i.e., ku� /TmkL2

¼ 0. Then from Eq. (13), for N !1,

C ¼
Z

V

rðx; yÞ/ðxÞdV ¼

Z
V

rðx; yÞ/ðxÞ/T
ðxÞdV

� �
m ¼ m. (33)

Thus, under the L2 measure, C ¼ m, and /T
ðxÞC ¼ uðxÞ. From Eq. (25), BT

aBa ¼ CTC, and therefore

CTC ¼ CT

Z
V

rðx; yÞ/ðxÞ/T
ðxÞdV

� �
C

¼

Z
V

rðx; yÞð/T
ðxÞCÞ2 dV

¼

Z
V

rðx; yÞdV ¼ m. (34)

By Lemma 1, we have Eq. (32). &

From Eqs. (16), (17), and (18), the goal of the energy harvesting control system is to control iðtÞ so as to
maximize the expectation of PSðtÞ, i.e.,

P̄S ¼ E½PS�

¼ � E½iTðtÞvðtÞ þ iTðtÞRiðtÞ þ VswkiðtÞk1�. (35)

The conversion efficiency Z is defined as

Z ¼
P̄S

P̄A

. (36)

Note that from Lemma 1, P̄A is independent of i. Also, while P̄A does depend on the mass distribution of the
patches along the beam, it is independent of where these patches are partitioned, or how many partitions
there are. It follows from this observation that for white noise excitation, the energy harvesting controller
which maximizes P̄S is the same as the controller which maximizes Z. This is an interesting consequence
of the assumption that aðtÞ is perfect white noise. Under different assumptions, maximization of efficiency
is not necessarily the same as maximization of P̄S, because some controllers will result in higher P̄A than
others.

3. Optimal energy harvesting in the presence of resistive drive losses

In this section we consider the case where V sw ¼ 0, i.e., the case in which the semiconductor switches are
presumed to be 100% efficient. Note that this assumption still allows for a nonzero drive resistance matrix R.
In fact, it will be assumed in the sequel that the drive resistance matrix is positive-definite, i.e., R40. With
Vsw ¼ 0, we have that

P̄S ¼ �E½i
TðtÞvðtÞ þ iTðtÞRiðtÞ�. (37)
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3.1. State feedback

We now show that the optimal causal control of current vector i constitutes a linear feedback function of the
system state x, and that the optimal feedback relationship can be found from standard H2 optimal control
theory, through the solution to an associated Riccati equation.

Theorem 1. Let A be asymptotically stable, and assume V sw ¼ 0. Then over the space of all causal, continuous

feedback functions of the dynamic system response, the optimal energy-harvesting current is characterized by the

linear state feedback relationship

iðtÞ ¼ FxðtÞ, (38)

where

F ¼ �R�1BT
i P (39)

and P40 is the unique solution to the associated Riccati equation

0 ¼ �1
2
½Aþ AT

� þ ATPþ PA� PBiR
�1BT

i P. (40)

The optimal harvested power is

P̄S ¼ FaB
T
a ½

1
2
I� P�Ba40. (41)

Proof. The total power dissipated in the first N modes of the beam, the piezoelectric impedance, and power-
electronic drive is

Pdiss ¼ �x
TAxþ iTRi. (42)

From Lemma 1, we have the energy conservation relationship

�P̄S ¼ E½Pdiss� � P̄N
A

¼ E½1
2
xT½�A� AT

�xþ iTRi� � 1
2
FaB

T
aBa. (43)

Thus, the optimal energy harvesting control problem can be reframed as the minimization of the expectation
on the right-hand side of the equation above. Because A is asymptotically stable and Aþ ATp0, it
immediately follows as a standard result form H2 optimal control [23] that the feedback law to minimize this
function exists, is linear, is characterized by Eqs. (38), (39) and (40), that

E½Pdiss� ¼ FaB
T
aPBa (44)

holds for the closed-loop system, and that P40. The last inequality in Eq. (41) is due to the fact that i ¼ 0 is in
the domain over which the control was optimized, and yields P̄S ¼ 0. &

It is interesting to note that if optimal controller (38) is implemented, then the optimal efficiency is

Zopt ¼
BT

aBa � 2BT
aPBa

m
. (45)

This constitutes the upper bound on efficiency, resulting from limitations of the hardware. For finite R, it is
physically realizable if x can be measured with certainty at every time. However, this is usually not reasonable,
and consequently the controller in Theorem 1 is generally impractical. Later, this will be rectified through the
use of an observer, resulting in only the transducer voltages being necessary for feedback, thus effectively
eliminating the need for sensors altogether. However, Theorem 1 does provide very useful insights into the
physical limitations of energy harvesting systems, and can be used to explore the way hardware parameters
affect these limitations.

The results from Theorem 1 raise interesting questions about optimal energy harvesting control, for the case
where the drive is very efficient, i.e., R! 0. This case has a well-known control-theoretic interpretation, called
‘‘cheap control’’ [24,25], which is concerned with the limiting values for P and F for R ¼ rI, with r! 0.
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Substitution of the equations for cheap control into the system at hand gives

lim
r!0

P ¼ Bi?P0B
T
i?, (46)

lim
r!0

ffiffi
r
p

F ¼ ½½0 � R1=2
p HT

�P0 � R�1=2p C�1=2p �, (47)

where Bi? ¼ I 0½ �T and P0 is the solution to the Riccati equation

0 ¼
0 0

0 C

� �
þ

0 �K�1=2

K1=2 �C

" #
P0 þ P0

0 K1=2

�K�1=2 �C

" #
� P0

0 0

0 HRpH
T

" #
P0. (48)

Thus, we have that the maximum physically attainable efficiency for a given beam and transducer
configuration, irrespective of the drive hardware used, is

lim
r!0

Zopt ¼
1

m
BT

a I� 2Bi?P0B
T
i?

� �
Ba. (49)

However, asymptotic achievement of this efficiency results in F!1, and is therefore not reachable, even if a
lossless drive existed, and full-state feedback were practical.

Theorem 1 can be used to explore the way that different system parameters affect the physical limit on energy
harvesting performance, which can be used to optimize system hardware. Here, we illustrate this through the
optimization of ‘1 and ‘2 (with the understanding that ‘3 ¼ ‘ � ‘1 � ‘2), for optimal total power transduction.

The top left plot in Fig. 3 shows Zopt over the domain of allowable f‘1=‘; ‘2=‘g values, under the assumption
of a lossless drive. For this assumption, the ‘‘cheap control’’ approach is used to calculate Zopt as in Eq. (49).
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This plot is useful because it allows us to consider the maximum physically attainable efficiency independently
of the drive hardware. Above the plot, maximum efficiencies for one, two, and three patches are listed.
The optimal three-patch efficiency is attained with f‘1=‘; ‘2=‘g ¼ f:100; :162g. The value of the maximum on
the boundary of the domain is the optimal efficiency with two patches, while the single-patch efficiencies
are those at the corners of the domain. Percentages of improvement for two and three patches, over one
continuous patch, are 13% and 18%, respectively.

It is interesting to note that the efficiency of the drive circuitry has a strong impact not only on the amount
of power which can be harvested, but also on the optimal patch locations along the beam. In addition to the
lossless case, Fig. 3 shows contour plots for Rj ¼ 0:1O, 10O, and 100O. As expected, as the drive impedance
increases, the ability of the system to harvest energy decreases. However, the important point here is that the
optimal locations of the patches change as well. It is also interesting to note that the increasing drive resistance
has the effect of ‘‘smoothing out’’ the dependency of efficiency on the patch lengths.

3.2. Transducer voltage feedback

We now consider the formulation of a dynamic feedback controller that determines i from v. Such a system
requires no structural sensors, which is highly appealing in an application in which energy efficiency is the
primary concern. We now state, without proof, a standard lemma which provides the framework for control
design.

Lemma 3. Let K : v! i be any causal, continuous (possibly nonlinear) feedback law, and assume R40. Then the

absorbed power in stationary response is

P̄S ¼ FaB
T
a ½

1
2
I� P�Ba � Eki� Fxk2R, (50)

where F is as in Eq. (39).

Proof. See, for example, Ref. [21]. &

We will only consider linear dynamic controllers of the form

iðsÞ ¼ KðsÞvðsÞ. (51)

From Eq. (50), the underlying goal for the design of KðsÞ is to minimize the quantity Eki� Fxk2R. However,
this minimization is subject to limitations of the control and sensor hardware, such as bandwidth limitations,
gain limitations, pole placement limitations, noise corruption, and complexity. The degree to which these
diverse constraints restrict KðsÞ will ultimately vary from one application to another, as dictated by control,
sensor, and power-electronic hardware, and will significantly modify the way in which the design should
proceed.

In this paper, we consider only the very simplest case, in which v is measured in the presence of broadband
noise, resulting in the optimal KðsÞ as a Kalman filter which operates on feedback law (38). However, it should
be noted that this scenario was chosen simply for brevity. For the case in which one of the other
aforementioned control limitations dominates, or in which several limitations should be enforced
simultaneously, KðsÞ can still be designed systematically [26]. However, the exposition associated with these
design methods was deemed beyond the scope of this paper.

Theorem 2. Let the measurement noise of the transducer voltages to be a white noise process nðtÞ 2 Rnp with

spectral intensity Un40. Then the optimal energy harvesting controller is

KðsÞ ¼ �F½sI� A� BiF� LBT
i �
�1L, (52)

where

L ¼ �WBiU
�1
n (53)

and W40 is the unique solution to Riccati equation

0 ¼ BaFaB
T
a þ AWþWAT

�WBiU
�1
n BT

i W. (54)
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The optimal absorbed power is then

P̄S ¼ FaB
T
a ½

1
2
I� P�Ba � tr½WFTRF� (55)

¼ tr½UnL
T½1

2
I� P�L� (56)

40. (57)

Proof. For the performance functional in Lemma 3, Eqs. (52), (53), (54) and (55) are standard results [23,21].
It is straightforward to show that Eq. (55) is equivalent to

P̄S ¼ FaB
T
a ½

1
2
I� P�Ba � FaB

T
aXBa þ tr½UnL

TXL�, (58)

where X40 is the solution to

0 ¼ ATXþ XAþ FTRF. (59)

But the solution to the above is X ¼ �Pþ 1
2
I, thus giving Eq. (56). Inequality (57) is due to the fact that K ¼ 0

is in the optimization domain, and yields P̄S ¼ 0. &

One interesting issue brought to light by Theorem 2 is the way in which the ability to measure v precisely
affects the optimal amount of power that can be harvested. To illustrate this, we return again to the example
from Section 2.3, with ‘1=‘ and ‘2=‘ equal to 0:118 and 0:184; the optimal parameters in Fig. 3 for Rj ¼ 100O.
For this system, Fig. 4 shows the way in which Un ¼ FnI affects P̄S for increasing Fn. Such plots as this can be
used to ascertain the accuracy of feedback measurements which is required for a given application.

Even with perfect measurements for v, the above control synthesis is useful because by increasing Fn, the
closed-loop control bandwidth can be indirectly reduced. Furthermore, in this case a simple Lyapunov
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Fig. 4. Dependence of optimal conversion efficiency on Fn, for Rj ¼ 100O.

10−1 100 101 102 103 104 105

10−4

10−2

100

102

||H
 (

iω
) 

K
 (

iω
)||

frequency (Hz)

Fig. 5. System loop gain for Rj ¼ 100O, with various Fn=Fa values (in V2 s4=m2): 10�6, 10�5, 10�4,

10�3, 10�2.



ARTICLE IN PRESS
J.T. Scruggs / Journal of Sound and Vibration 320 (2009) 707–725 719
argument can be used to show that the value of Z obtained by this procedure is bounded from below by the
values given in Theorem 2 for the case where the measurement noise actually exists. Consequently, this
procedure, while sub-optimal, still guarantees a certain threshold of energy conversion efficiency.

Fig. 5 shows this dependency, for the Rj ¼ 100O case. The figure shows the maximum singular value of the
feedback system loop gain HðsÞKðsÞ, where HðsÞ is the transfer function from i to v. In order for the closed-
loop controller dynamics to have a bandwidth below some o0, the maximum singular value of the loop gain
should have a crossover frequency at or below o0. So, for example, if a closed-loop bandwidth of 1 kHz is
desired, then 10�4oFn=Fao10�3 V2 s4=m2 is reasonable. This would in turn result in a lower bound for Z
between 0:66 and 0:70, according to Fig. 4. Finally, we note that as Fn ! 0, the control bandwidth becomes
large, and the controller approaches the performance of full-state controller (38).

4. Extension to systems with semiconductor drive losses

We now return to the general expression for P̄S, Eq. (35), which includes both resistive and semiconductor
dissipation terms. In this section, we extend the results of the last section to accommodate V swa0. We note,
however, that the methods presented here are sub-optimal, because only linear controllers will be considered.
It is freely acknowledged that in the presence of semiconductor switching losses, there may be nonlinear
controllers which outperform the ones presented here. However, the methods presented here do still give the
optimal linear control.

In general we have that

P̄S ¼ �E½i
Tvþ iTRi� � E½V swkik1�. (60)

The first expectation on the right-hand side is the value of P̄S in the absence of semiconductor dissipation. The
second term is the depreciation in this absorbed power due to semiconductor dissipation. We now define the
equivalent switch resistance Rsw ¼ diagf. . . ;Rswj ; . . .g such that in stationary response

RswjE½i
2
j � ¼ E½V swjijj�. (61)

Thus defined, we have that

P̄S ¼ �E½i
Tvþ iTðRþ RswÞi�. (62)

For a given closed-loop system with an arbitrary linear control law, the stationary response is Gaussian-
distributed, and consequently Eq. (61) can be restated as

Rswj ê
T
j Uiêj ¼ Vsw

ffiffiffi
2

p

r
½ê

T
j Uiêj�

1=2, (63)

where Ui ¼ E½iiT�, and where we have used the relation E½ jgj � ¼ s
ffiffiffiffiffiffiffiffi
2=p

p
, for a random variable g�Nð0; sÞ.

Thus,

RswðUiÞ ¼ V sw

ffiffiffi
2

p

r Xnp

j¼1

êj½ê
T
j Uiêj�

�1=2ê
T
j . (64)

In terms of RswðUiÞ, we can now state extensions to Theorems 1 and 2 for optimal control in the presence of
semiconductor drive losses.

Theorem 3. Let V sw40 and RX0. Then the following statements generalize Theorems 1 and 2, respectively:
(1)
 Let F, Ui, U, and P be solutions to the following four simultaneous equations:

0 ¼ �1
2
½Aþ AT

� þ ATPþ PA� PBi½Rþ
1
2
RswðUiÞ�

�1BT
i P, (65)

F ¼ �½Rþ 1
2
RswðUiÞ�

�1BT
i P, (66)

0 ¼ ½Aþ BiF�UþU½Aþ BiF�
T þ BaFaB

T
a , (67)

Ui ¼ FUFT, (68)
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where RswðUiÞ is as in Eq. (64). Then F : x! i is the linear state feedback controller optimizing P̄S, the

corresponding value of which is

P̄S ¼ FaB
T
a ½

1
2I� Psw�Ba �

1
2 tr½RswðUiÞUi�. (69)
(2)
 Let L and W be solutions to Eqs. (53) and (54). Let F, Ui and P satisfy Eqs. (65), (66), (68), but with U Û,
where Û obeys

0 ¼ ½Aþ BiF�Ûþ Û½Aþ BiF�
T þ LUnL

T. (70)

Then KðsÞ : v! i in Eq. (52), but with the new solution for F, is the linear voltage feedback controller

optimizing P̄S, the corresponding value of which is

P̄S ¼ FaB
T
a ½

1
2
I� P�Ba � tr½WFTðRþ RswðUiÞÞF� �

1
2
tr½RswðUiÞUi�. (71)
Proof. (1) Recall that the maximization of P̄S is equivalent to the minimization of E½Pdiss�. For any state
feedback gain F, E½xxT� ¼ U is found through Lyapunov equation (67), and E½iiT� ¼ Ui through Eq. (68).
Then we have

E½Pdiss� ¼ tr½ð�1
2
½Aþ AT

� þ FTðRþ RswðUÞiÞFÞU�. (72)

Optimality implies that

q
qF ij

E½Pdiss� ¼ 0 8i; j. (73)

For the case without semiconductor losses (i.e., with RswðUiÞ ¼ 0), evaluation of this optimality condition
leads directly to Eqs. (39) and (40). It is a standard linear algebra exercise to show that

q
qF ij

tr½FTRFU� ¼ 2 RFUf gij þ tr FTRF
q

qFij

U

� �
, (74)

q
qF ij

tr½FTRswðUiÞFU� ¼ fRswðUiÞFUgij þ
1

2
tr FTRswðUiÞF

q
qFij

U

� �
. (75)

As such, switch resistance RswðUiÞ participates in optimality condition (73) in the same manner as if it were a
linear resistance, but multiplied by a factor of 1

2
. Consequently, in the equations for optimal F, analogous to

Eqs. (39) and (40), this factor of 1
2
appears, giving Eqs. (65) and (66). Using the solution to Eq. (65), we have

that

tr½ð�1
2
½Aþ AT

� þ FTðRþ 1
2
RswðUÞiÞFÞU� ¼ FaB

T
aPBa. (76)

This equation and (72) give Eq. (69) for the optimal P̄S.
(2) For the voltage feedback case, the existence of semiconductor dissipation has no impact on the optimal

observer for the system, which is still the Kalman filter

_̂x ¼ Ax̂þ Biiþ Lðv� BT
i x̂Þ, (77)

with gain L defined as in Eqs. (53) and (54). The state covariance matrix U is the summation of Û ¼ E½x̂x̂T�
and W ¼ E½ðx� x̂Þðx� x̂ÞT� where Û is found through Eq. (70) and W through Eq. (54). Substitution into
Eq. (72) results in a decoupling of W, i.e., the problem is certainty-equivalent. For any feedback matrix
F : x̂! i, Ui is again found through Eq. (68). Optimality of F is still defined by Eq. (73), and the remainder of
the proof follows from Theorem 2 in an entirely analogous fashion to the way that proof (1) follows from
Theorem 1. &

Both in the state and voltage feedback cases, the solution to the optimal controller involves the solution to
five simultaneous equations, some of which are nonlinear. In general, these solutions do not have a closed
form. However, note that for fixed Rsw, these equations can be solved sequentially; first by finding P, then F,
then U (or Û for output feedback), and finally Ui.
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This observation gives rise to an iterative procedure for solving for the optimal linear feedback in the
presence of switching losses, which applies equally to state and voltage feedback cases. We start from an initial
guess for Rsw, denoted Rð0Þsw . Then, iteration k consists of:
(1)
Fig.

patc
Given RðkÞsw , solve for the optimal FðkÞ.
ðkÞ
(2)
 Find the resultant covariance matrix UðkÞ (or Û ) for the closed-loop linear system, and the current
covariance matrix as UðkÞi .
(3)
 Using UðkÞi , resolve for Rðkþ1Þsw from Eq. (64) and go back to step 1 with k k þ 1.
No guarantees are made here regarding the uniqueness of convergence for this ad hoc routine. However, it is
straightforward to prove that the algorithm does always converge, and produces monotonically increasing P̄S

for each successive FðkÞ. For the examples presented in this paper the routine did appear to converge to the
same solution for arbitrary initial Rð0Þsw .

4.1. Full-state feedback control

Consider the state-feedback control case, where Rj ¼ 0:1O and Vsw ¼ 1:4V. Then the optimal controller, as
well as the optimum efficiency, depends on the excitation intensity Fa. This is shown in Fig. 6, for which F was
optimized as described above for each Fa. Two patch distributions are shown in the figure; one with f‘1; ‘2g ¼
f0:1‘; 0:2‘g and the other with a single patch spanning the beam length. Also shown are the effective switch
resistances, Rswj , as a function of Fa, for the optimized closed-loop system.

This plot has several key features. First, note that for Fa below the critical value (0:002 for the three-patch
beam and 0:01 for the one-patch case) the energy harvesting becomes infeasible. This is because below this
excitation level, the drive cannot be operated at all without dissipating more energy than is being transduced.
Thus, below this excitation level, the ‘‘optimal control’’ is to do nothing. For values of Fa above this critical
value, the efficiency of conversion rises, as the switch resistances decrease. Two benchmark lines are shown on
the plot, signifying the optimal efficiency with V sw ¼ 0. The efficiencies in the presence of switching losses
asymptotically approach this upper bound as Fa !1.

In the presence of semiconductor dissipation, plots analogous to Fig. 3 can be made to ascertain the
sensitivity of Zopt to the patch lengths. This is shown in Fig. 7, for Fa values of 0:002, 0:01, 0:1, 1, 10, and
R
sw
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100m2=s3. Qualitatively, these plots give intuitive results, in the sense that as Fa becomes small, Rsw becomes
large, resulting in lower optimal efficiencies. However, note that while the marginal increase between one and
two patches is rather large in all cases, the marginal improvement from two to three patches only becomes
significant for large Fa. We also note that for low Fa, the optimal efficiency corresponds to very small patch
lengths, which are impractical. In this case, near-optimality can be obtained by using two patches, with the
patch nearest to the root of the beam designed to be as short as possible.

4.2. Voltage feedback control

In the voltage feedback case, the design of KðsÞ follows in essentially the same manner as the full-state
feedback case, and results similar to Fig. 6 follow. Assuming Un ¼ FnI, we can investigate the way in which Fa

and Fn influence the conversion efficiency Z achieved by this design approach. Fig. 8 shows a contour plot Z
for the optimized KðsÞ, as a function of Fa and Fn, and where we have used f‘1; ‘2g ¼ f0:1‘; 0:2‘g. As expected,
the efficiency for any ratio Fn=Fa increases with Fa.



ARTICLE IN PRESS

0.7

0.6

0.5

0.4

0.3
0.2
0.1

-5 -4 -3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Φ
a 

(m
2 /s

3 )

Φn/Φa (V
2s4/m2)

Fig. 8. Efficiency for optimal linear voltage feedback, vs. Fa and Fn, for Vsw ¼ 1:4V and Rj ¼ 0:1O.

�

100
0

0.2

0.4

0.6

0.8

1

10-1 102 10310110-210-3

Φa (m
2/s3)

Fig. 9. Efficiency for linear output feedback controllers optimized for Fa values of 0:01, 1, and 100m2=s3.

J.T. Scruggs / Journal of Sound and Vibration 320 (2009) 707–725 723
4.3. Sub-optimal control

Results from this section have illustrated that both for state and voltage feedback, the optimal energy
harvesting controller depends on excitation intensity Fa. In many applications, this may present a difficulty,
because there may be significant uncertainty in Fa, or else it may vary over time. One solution to this would be
to make the feedback controller adaptive to these different conditions. However, the computational resources
associated with such an adaptive controller may require significant power, and this demand may exceed the
power actually being generated. Consequently, a simpler linear time-invariant (yet sub-optimal) controller
may be more appropriate.

Fig. 9 shows the sub-optimal conversion efficiencies for three linear voltage feedback controllers KðsÞ,
designed assuming Fa values of 0:01, 1, and 100m2=s3. For each design, a Fn value was assumed which
resulted in a crossover frequency of approximately 1 kHz. For the three designs, this resulted in Fn values of
10�7, 10�4, and 10�1 V2 s. The plots in Fig 9 assume that this measurement noise is actually present in the
system. If perfect measurements are alternatively assumed, the efficiencies increase slightly. For reference, the
optimal efficiency with full-state feedback (i.e., from Fig 6) is also shown. As can be seen, there is definitely a
price to be paid for sub-optimal control design, as all three controllers exhibit performance well below the
maximum physically attainable performance, for Fa away from the design value. In the case of the controller
optimized for Fa ¼ 100m2=s3, the performance of the controller is further hampered by the restriction on
bandwidth, which accounts for why its efficiency falls well short of reaching that of optimal state feedback,
even at the design point at Fa ¼ 100m2=s3.
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5. Conclusions

This paper has presented a systematic approach to the design of control systems for energy harvesting
applications. Although the focus has been on harvesting energy from piezoelectric bimorph beams, the theory
is applicable more broadly. It is appropriate in circumstances where the external input can be justifiably
modeled as a broadband acceleration, and is applicable to arbitrarily large networks of coupled transducers,
and to systems with many resonant modes. The main conclusions of this analysis can be summarized as
follows:
(1)
 In the presence of resistive drive impedances, the optimal control of energy harvesting systems for maximal
power generation is a linear state feedback law, which can be derived using standard state feedback H2

control theory. The case of a lossless drive model can be interpreted as a ‘‘cheap control’’ problem,
although the optimal control gain becomes infinitely large as the drive resistance approaches zero.
(2)
 In the presence of resistive drive impedances and broadband measurement noise, the optimal transducer
voltage feedback law is a linear dynamic controller, and its design can be framed as a standard output-
feedback H2 control problem. In this case, the optimal controller as well as the optimal power conversion
efficiency depends on the sound-to-noise ratio Fa=Fn.
(3)
 The closed-form nature of these optimal control designs makes it straightforward to concurrently optimize
hardware and control for maximal conversion efficiency.
(4)
 These control design techniques can be extended to systems with combined resistive and semiconductor
drive dissipation, using an iterative design approach. The resultant optimal control policy, and the optimal
conversion efficiency, will in general depend on the level of external excitation as well as the measurement
noise.
This analysis raises many questions. For example, in many applications the measurement noise associated
with transducer voltage feedback may not be the dominant hurdle the system must overcome to achieve
maximal efficiency. Rather, bandwidth restrictions, or controller order limitations, may be the primary
limiting factors in the design. Additionally, this analysis does not take into account some power demands,
such as that required to operate the control intelligence and gate the mosfets in the drive circuitry. Although
these issues may be more difficult to treat directly in a theoretical context, this may be necessary in order to get
the clearest picture of the constraints impinging on control and hardware design.
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